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DARPA Why Heterogeneous Integration?
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3.1y Civilian and defense needs overlap at the leading edge
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3[:1TY DARPAs long history of innovation in integration

ASEM

3D FPA Stack

ASEM: Application Specific Electronic Modules

E-PHI: Electronic-Photonic Heterogeneous Integration

VISA: Vertically Integrated Sensor Arrays

COSMOS: Compound Semiconductor Materials on Silicon E-PHI
DAHI: Diverse Accessible Heterogeneous Integration :
MOABB: Modular Optical Aperture Building Blocks

CHIPS: Common Heterogeneous Integration and IP Reuse Strategies
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100 What is heterogeneous integration?
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DARPA's DAHI program:
Diverse Accessible Heterogeneous Integration
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DAHI snapshot:
DARPA Excellent yield, demonstrated RF performance
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PA DAHI simplicity enables rapid evolution

Technology mpwo |  MPw1i | MPW2 | MPW3 | Future MPWS

CMOS IBM 65nm GF 45 nm GF 45 nm GF 45 nm GF 45 nm
InP HBT TF4 (2 metals) TF4 (3 metals) TF4 (4 metals) TF4 (4 metals) TF4 (4 metals)
TF5 (3 metals) TF5 (4 metals) TF5 (4 metals) TF5 (4 metals)

II)riI(F:d\;aractor AD1
GaN HEMT GaN20 GaN20 GaN20 GaN20 GaN20

T3 (HRL) T3 (HRL) T3 (HRL) T3 (HRL) T3 (HRL)
GaAs HEMT P3K6 P3K6
Passive PolyStrata PolyStrata PolyStrata

PolyStrata (Nuvotronics)

Components (Nuvotronics) (Nuvotronics) (Nuvotronics)
Base CMOS CMOS CMOS CMOS CMOS
Substrate SiC Interposer (IWP5) | SiC Interposer (IWP5)

In fab

39 Party CMOS CHIP
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TSV SiC Interposer |
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G Metal Embedded Chip Assembly (MECA)

MECA enables heterogeneous integration with a metal
interconnect platform for high-power requirements.

SIMPLE FAN-OUT WLP PROCESS FLOW
Chips are embedded in a mold compound

Tape
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DPA MECA-enabled performance upgrade

Integration in electroformed heat spreader: 1.4-2x improvement in PA performance
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DPA DAHI chip-scale phased arrays

Heterogeneous integration for mm-wave: Wafer-level heterogeneous integration
Phased array beamformers

+ Can maintain A/2 channel spacing as frequencies increase _
» CMOS control circuitry closely integrated with RF chain

+ Improved channel performance and efficiency with addition G\ o\ -\ -
of TIL-V devices I I T EHTIT
 Fully integrated beamformer channels demonstrated with
) ) . . InP HBT
integrated InP devices and Si control electronics
« >100mW Pout Tx channel, 4.5 dB NF Rx @
Integration schematic InP/CMOS with DBI Process
| 130 nm
Si CMOS
Cu/Sio,
Bond
Interface
| 250 nm
InP HET
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DAHI InP/CMOS beamformer performance
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DARPA Advancing integration to the device level

Microtransfer Printing

Populated Stamp

N\

1. Fabricate GaN devices on
template on SiC substrate using
standard fabrication processes.

4. Transfer print GaN device to
substrate using
stamp and optional adhesive.

2. Mask known-good GaN devices 3. Pattern photoresist anchors

for fransfer and recess etch to and protective mask.
gain access to layer. Selectively etch layer

using XeF, reactive gas.

5. Release GaN device from 6. Remove photoresi
- stamp. protective mask from
transferred GaN device.
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Transferred device results

Microtransfer Printing: GaN HEMT
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DPA Transfer printing to create a device

Transfer printing can stack nano-membrane layers to create junctions and devices

p-Si mesa on i-Si SOI

i-AlGaN QW on AIN subs.

n-Si SOI

f (a) Source wafers \

p-Si NM release with PDMS

p-Si NM print on i-AlGaN QWs  AIN substrate removal
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Transfer printed
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P

Sources: U. of Wisconsin, Michigan State U.
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Common Heterogeneous Integration and IP Reuse Strategies:
The next step in heterogeneous integration

Eo EXXIXZ CHIPS: modular design
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DPA Integration impact driven by Standards and Modularity

IPC g
Standards
Image: Intel
“Printed Early PCB First HYM Patent to IPC (Institute for Multi- Surface Mount HDI / Microvia  First package-
circuit board” demoin a PCBs enable US Army Printed Circuits) layer PCB Technology on technology on-package
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o e il
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PA End of Moore'’s Law?

Moore’s Law
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Selected predictions for the end of Moore's Law

. Prediction
Cited reason: icsrid
M Economic limits [l Technical limits

1995 2000 2005 2010 2015

Economist

Predicted
end date

2020 2025 2030

1995
Gordon Moore, Intel @ = = = = = = = M 2005
1996
G. Dan Hutcheson, VLSI Research) @ = = = = = W 2003
2000
Isaac Chuang, IBM Research @ === ========== === W 2020
2003
Paolo Gargani, Intel @ = = = = = = = = = = = —— - W 2021
Lawrence Krauss, Case Western, :004
and Glenn Starkman, CERN approx. 2600
2005
Gordon Moore, Intel @ = = —— = —— I 001525
2011
Michio Kaku, City College of NY @ = = = = = = = W 2021-22
2013
Robert Colwell, DARPA; (fmr) Intel @ = = = — = . 2020-22

Sources: Press reports; The Economist

Economist.com

Changes in silicon industry will be felt by compound semiconductors

Source: Electronics Magazine, Economist.com

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

18



1.1y Moore’s Law INCLUDES Heterogeneous Integration

It may prove to be more economical to build large
systems out of smaller functions. which are separately pack-
aged and interconnected. The availability of large functions.
combined with functional design and construction, should
allow the manufacturer of large systems to design and
construct a considerable variety of equipment both rapidly
and economically.
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G. E. Moore is one of the new breed of elec-
tronic engineers. schooled in the physical sci-
ences rather than in electronics. He earned a B.S.
degree in chenustry from the University of Cal-
ifornia and a Ph D. degree in physical chemistry
from the Califerma Institute of Technology. He
was one of the founders of Fairchild Semicon-
ductor and has been Director of the research and
development laboratories since 1959
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) What is CHIPS?

Today — Monolithic Tomorrow — Modular

CHIPS will develop design tools, integration standards,
and IP blocks required to demonstrate modular
electronic systems that can leverage the best of DoD and
commercial designs and technology.

Image: Intel

CHIPS enables rapid integration of
functional blocks at the chiplet level

Custom chiplets = Commercial chiplets
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1.4 CHIPS developing interface standard

CHIPS Target
Data rate 10 Gpbs
Energy efficiency < 1 pJ/bit
Latency <5ns
Bandwidth density > 1000 Gbps/mm

100,000

10,000

o Single-ended
®

EMIB @28nm SO, Single-ended, Al on Si
1,000 - . .
U @28nm, ground-ref., single-ended, organic PCB
Ground ref.
® @45nm SO, differential, Cu on Si
(& L Differential @32nm, differential, 32AWG cable
100 HBM v ® @EMIB
@

@ 14nm SERDES, PCB

Bandwidth density / energy per bit
(Gbps/mm) / (pJ/bit)

SerDes @ 14nm HBM
w

10 @
e v
' Sources:
1. 2016 JSSC, Dehlaghi
2. 2013 JSSC, Poulton
1 Co-ax 3.2012 JSSC, Dickson
0.1 1 100 1000 4. 2013 JSSC, Mansuri

10 :
Interconnect Length (mm) 5. 2016 £CTC, Mahajan

CHIPS interface is one of many possible routes for efficient interdie communications

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 21



DPA CHIPS program: structure and timing

PHASE 1
Interface and IP Block Demo

PHASE 2

Module Demo with IP Blocks

PHASE 3
Rapid Module Upgrade

f, ]

Interface demo

Integration platform

Full system IP
reuse demo

I

Phase 1a
(8 mo.)

Interface standards

Phase 1b
(10 mo.)

Phase 2 (18 mo.)

Interface demo

O

Module demo

TAl

Modular Digital Systems

TA3

Supporting Technologies

TA2

Modular Anvalog Systems

<

Rapid upgrade

Seeking CHIPS collaboration to help drive a common interface

Source: DARPA
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CHIPS: August 2017 Kickoff

Designs

Chiplets

Tools

CHIPS Team

Boeing

Intel

Lockheed Martin
Northrop Grumman
Univ. of Michigan

Intrinsix

Jariet

Micron

North Carolina State
Synopsys

Cadence
Georgia Tech

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

CHIPS Approach
Modularity
Standards

CHIPS Results
Fast
Cost-Effective
Best-in-Class

Images sources:
Lockheed Martin, Boeing, Intel,
Intrinsix, Univ. of Michigan, 3GPP.org 273



What's next?
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11:{) Electronics Resurgence Initiative

« ERI—creating an electronics capability that will provide a foundational
contribution to national security

« Three thrust areas: Materials and Integration, Architectures, Designs

2025 - 2030
NATIONAL ELECTRONICS CAPABILITY
$216 MILLION @
TOTAL (FY18)

E RI Page 3 Investments

$75 million MATERIALS ARCHITECTURES DESIGNS
< Of New Funding
Electronics (FY18)
Resurgence
Initiative

$141E?f1élll‘|t2n(||:r\1(f;)rrent JUMP + Traditional Programs
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New investment based on “Page 3"

VIIl. DAY OF RECKONING

Clearly, we will be able to build such
component-crammed equipment. Next, we ask
under what circumstances we should do it. The
total cost of making a particular system
function must be minimized. To do so, we could
amortize the engineering over several identical
items, or evolve flexible techniques for the

engineering of large functions so that no
disproportionate expense need be borne by a
particular array. Perhaps newly devised design
automation procedures could translate from
logic diagram to technological realization
without any special engineering.

It may prove to be more economical to build
large systems out of smaller functions, which | |
are separately packaged and interconnected.

Electronics, April 19, 1965: Cramming More Components The ?.V&Ilablht}/ of Iarge functloqs, combined with
onto Integrated Circuits; Gordon Moore functional design and construction, should allow
P3 the manufacturer of large systems to design and

construct a considerable variety of equipment both
rapidly and economically.

Architecture Design Materials & Integration
Maximizing specialized Quickly enabling = Adding separately packaged novel materials and
functions specialization using integration to provide specialized computing
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DPA Recent DARPA investments and momentum

‘ 2016 2017 ‘ 2018 ‘ 2019 ‘

_Tl v re ’e T >
I - - - -

11/2013 . Electronics Resurgence Initiative
N-ZERO I ERI
Kickoff 4/2016 | Launch

~ CRAFT | R JUMP

| Kickoff I v University Driven

6/2016 I

: CHIPS I +

I Approved :

: 8/22/2016 I #7 Page 3 Investments

JUMP . =: ,

I Approved 12017 Industry Driven

1 L2M

| Approved

I

I I 472017

I | HIVE

:  Kickoff Traditional

I : 4/2017 Programs

: | SSITH

I I BAA Released

OTAs signed in 12 month period

P — —

Inte] Qualcomm Rambus XILINX _ Micron
] Keysight Flexlogix
Cadence Technologies Technologies, Inc
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PA Investments inspired by Moore’s “Page 3"

Page 3 Investments

Architectures Designs Materials & Integration
Domain-Specific System on Intelligent Design of Electronic Three Dimensional Monolithic
Chip (DSSoC) Assets (IDEA) System-on-a-Chip (3DSoC)
—Thomas Rondeau — Andreas Olofsson — Linton Salmon
Software Defined Hardware Posh Open Source Hardware Foundations Required for
(SDH) (POSH) Novel Compute (FRANC)

— Wade Shen — Andreas Olofsson — Daniel Green

Heterogeneous Integration directly part of Materials and Integration thrust
and indirectly part of Architectures and Design thrusts as well
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@ The Challenge: Overcoming Memory Bottleneck

Current von Neumann architecture spends
more time moving data than processing it

Neural Programmer (LSTM) ResNet-152 (CNN) Alex Net (CNN)

W <

92% 80% 85%

m Compute Memory Data from S. Mitra of Stanford

Data for 7nm instantiation of a state-of-the-art Machine Learning accelerator

Accelerators don't help (enough) if using the same architecture
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@ An Integrated, Monolithic SoC (3DSoC) Solution

An example of an integrated flow that fabricates 3D logic and memory on a single die

12 layers of ReRAM
interspersed with >
3 layers of CNFET logic “— &

from S. Mitra of Stanford University

Note: This is an example only. Other technical approaches are expected.

Critical characteristics for a monolithic solution

Must permit new architectures that leverage fast, configurable access to non-volatile
main memory
Stackable 3D logic and memory functions that allow new architectures
« Low temperature formation
* Logic AND memory
« High density of memory — at least 4GB (Giga-Byte)/die
Possible to fabricate in existing domestic, commercial, high-yielding infrastructure
* 90nm on 200mm wafers
» High yield on large SoCs
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PA

FRANC leverages demonstrated benefits of
beyond von Neumann topologies

From Memory or

Stacked [ g’f* @"" - “
sy | :;"*s-”’ 4}*:? % Near-memory processing
il “ - provides dramatic
I I I s Controller | Address +—Accelerator
5 BE - EBE T Generaton performance and energy
i improvements
Logic Layer ™
TocMr::s\;;:or
U. Mich, UCSD (To/from processor) m External Acc+ M. mNM Ace.

» Xeon+HMC—Quad Xeon
and Hybrid Memory Cube

* NM Atom—16 Intel Atom
Cores

« External Acc—16 external
accelerators, SerDES

Speedup
O = N W s N = 00D

13x 13x
-Ill‘ll

linked
* NM Acc—Near memory string matching sort
accelerator (fgrep)

Source: S.F. Yitbarek, et al., DATE 2016.

memcpy

hash table
lookup

Performance Comparison (higher better)

Key result: near-memory processing provides dramatic performance improvements
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@ ERI Page 3: Architectures

Build new processors that solve the significant computing
needs of today s and tomorrow s applications.

1: Domain Specific System on Chip (DSSoC) i g j j m
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2: Software Defined Hardware (SDH)

Big Data is efficiency sensitive, large and repeatable work loads
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@ DSSoC program will...

 Create a development ecosystem
that takes advantage of the
specialized hardware with no
added burden to the programmer

 Design an intelligent scheduler for
efficient data movement between
DSSoC processor elements

 Build a DSSoC of advanced,
heterogeneous processors and
accelerators for software radio

Examples of Processor Elements (PE)

General Memory
Purpose
. -.p o Accelerator

BﬁS&%?%Snal Processor Neuromorphi

C

DSSoC will enable rapid development of multi-application
systems through a single programmable device
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6@ Software-defined hardware (SDH)

High-level program

v

\_

4 Dynamic HW/SW compilers for high-level languages (TA2) )

1. Generate optimal configuration based on static analysis code

2. Generates optimal code
3. Re-optimize machine code and processor configuration based on runtime data

J

Code, /odez /

Config,

Config,

Code, l

Config;

NN

Config,

Properties:
Reconfiguration times: 300 - 1,000 ns
Re-allocatable compute resources — i.e. ALUs for address computation or math

Re-allocatable memory resources — i.e. cache/register configuration to match data

1

2.
3.
4,

Malleable external memory access — i.e. reconfigurable memory controller

Reconfigurable processors (TAl)
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DPA IDEA: High level objectives

IDEA will completely automate the layout of
electrical circuits and systems

Machine-generated
board layout

Machine-generated
chip and package layout

Intent-driven -
system generation .

Sources: Raspberry Pi
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1.udY) A unified electrical circuit layout generator

Today IDEA

| |
| |
| |
| |
| |
| |
I l Training
|
: , IDEA |
I I Unified Layout Generator <+<— Models
| | |
| |
| ! ) } '
: : Chip Package Board
l l :
l l .
Chip : Package . Board '
9 months . 3 months ' 3 months 24 hours

* Knowledge embedded in humans - Knowledge embedded in software

« Limited knowledge reuse * 100% automation

« Reliance on scarce resources e 24 hour turnaround
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DPA Future of heterogeneous integration

Requires a lot of pieces coming together!

Source: DARPA
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